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Excessive convergence was not seen in neither in the
trained European children nor the Moken children. In
order to see well underwater, these children seem to have
learned to uncouple accommodation from convergence
while diving. Uncoupling convergence from accommoda-
tion can be achieved by most subjects after some
training—a requirement for viewing certain types of
three-dimensional images (Rushton & Ridell, 1999;
Schowengerdt & Seibel, 2004).

Amongst the European children under training, there
was sometimes a clear improvement from 1 day to the
other, and when asked they could not explain how they
did it, just that they ‘‘could see it much better now’’. This
indicates that the children unconsciously compensated for
underwater defocus. The results of the second follow-up
study in a bright outdoors environment also show that
the children’s ability to compensate became so good that
they achieved at least the same ability to solve the under-
water visual tasks as the Moken children. The superior per-
formance of trained European children (8.01 vs. 6.06 c/deg
in the Moken children) may to some extent have been due
to their extensive experience in looking at highly defocused
gratings. They may have learned to make better use of spu-
rious resolution, which certainly is a factor in this type of
experiment (Gislén & Gislén, 2004). It is, however, also
clear from the theoretical analysis (Gislén & Gislén,
2004) that the achieved performance can only be explained
if the children accommodated strongly, which is in agree-
ment with the observed pupil constrictions.

Interestingly, the subject whose learning process took
the longest was the child with the largest pupil diameter,
and this may have affected her chances of controlling pupil
closure. Children naturally have larger pupils than adults
(Kadlecova, Peleska, & Vasko, 1958; Winn, Whitaker,
Elliott, & Phillips, 1994) and this may affect the pupillary
near response. In some studies where initial pupil diameter
has been large, the authors reported only minor pupil con-
strictions when children accommodated (Schaeffel et al.,
1993; Wilhelm, Schaeffel, & Wilhelm, 1993). In another
study, where the initial pupil diameter of young subjects
was slightly smaller due to higher ambient illumination,
the pupillary response from accommodation was pro-
nounced (Schäfer & Weale, 1970). Thus, children seem to
be affected more than adults by the conflict between the
regulation of light levels on the retina and pupil constric-
tion induced by accommodation. Schäfer and Weale
(1970) also observed that if subjects of different ages start
with the same pupil diameter, accommodation induces a
greater constriction response in the older subjects. The
reflex to constrict the pupil when accommodating may still
be under development in young people, or the connection
may not always be functional when light levels are low.

The larger pupil of subject D may thus have been a prob-
lem when she tried to accommodate—she may have suffered
more than the other subjects from what is known as ‘‘night
presbyopia’’ (Alpern & Larson, 1960). However, although
her learning was slower, her underwater visual abilities
eventually improved (after 4 months) almost to the levels
in the other subjects. This means that there are individual
differences in the learning process. Such variability between
subjects in learning rate is common when training perceptual
tasks (Fahle & Edelman, 1993). Learning to control accom-
modation seems to be no exception. From the results of the
follow-up studies we also conclude that the ability to learn to
accommodate in response to underwater defocus is subject
to what is commonly known as consolidation, or reminis-
cence (Mollon & Danilova, 1996)—that is, the effect of train-
ing is not manifested until after a certain period of time has
elapsed, with training-induced neural processes continuing
to develop even after practice has ceased. This effect has been
shown in several studies concerning visual performance
(Gilbert, Sigman, & Crist, 2001; Karni, Tanne, Rubenstein,
Askenasy, & Sagi, 1994; Sagi & Tanne, 1994), memory pro-
cesses (Gaffan, 1996), and motor skills (Brashers-Krug,
Shadmehr, & Bizzi, 1996; Karni & Sagi, 1993).
5. Conclusion

It is clear from this study that Moken children, which
are highly experienced in underwater visual tasks, do not
have significantly higher general contrast sensitivities in
the critical range than untrained European children. Other
neuronal changes in the visual pathways can only explain a
fraction of the observed ability to see better underwater.
Accommodation and pupil constriction, however, can
together improve underwater vision to the observed degree.

The most likely explanation for the superior underwater
performances of Moken and trained European children is
therefore that they have learned to control their accommo-
dation—which would result in the observed constrictions
of the pupil—and to decouple accommodation from con-
vergence. In this paper, we have thus provided an explana-
tion for how the ability to see better underwater has
developed in the Moken people of South-East Asia who
depend on superior underwater acuity for their survival.
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